Non-linear Summary
Capacitors and Inductors
Characteristics | Capacitor | Inductor |
---|---|---|
Unit | Farad (F) | Henry (H) |
Voltage \(V\) | \(V_C = \frac{1}{C} \int i\ dt\) | \(V_L = L\frac{di}{dt}\) |
Current \(i\) | \(i_C = C\frac{dv}{dt}\) | \(i_L = \frac{1}{L} \int Vdt\) |
Prevents jumps | Of voltage | Of current |
Series | \(\sum \frac{1}{C_n}\) | \(\sum L_n\) |
Parallel | \(\sum C_n\) | \(\sum \frac{1}{L_n}\) |
Time constant \(\tau\) | \(\tau_C = RC\) | \(\tau_L = \frac{L}{R}\) |
Impedance | \(\Z_C = \frac{1}{j\omega C}\) | \(\Z_L = j\omega L\) |
DC (\(\omega = 0\)) | \(\Z_C = \infty\) (open) | \(\Z_L = 0\) (short) |
AC (\(\omega\) high) | \(\Z_C \approx 0\) (short) | \(\Z_C \approx \infty\) (open) |
Phasor sine wave | Leads | Lags |
General Forms for C and L:
\[V = V(\infty) + (V(0)^+ - V(\infty)) e^{\frac{-t}{\tau}}\] \[i = i(\infty) + (i(0)^+ - i(\infty)) e^{\frac{-t}{\tau}}\]
DC Example
w7
AC Example
w9
Phasors
Phasor sources are in cosines:
\[\sin \theta = \cos(\theta - \frac{\pi}{2}) = \cos(\theta - 90°)\] \[v(t) = V_m \cos(\omega t + \theta),\ \ i(t) = I_m \cos(\omega t + \theta);\] \[v(t) = V_m \angle \theta = V_m (\cos \theta + j \sin \theta)\]\[A + jB = C\cos(\omega t + \theta)\] \[C = \sqrt{A^2 + B^2}\] \[\theta = \arctan \frac{B}{A}\]
Impedance
\[Z = R + jX\]Where R is the resistance and X is the reactance.
Root Mean Square (RMS)
Also known as effective voltage and current, it represents the power an AC source delivers to a load (resistor).
\[V_{rms} = \frac{V_L}{\sqrt{2}}\] \[I_{rms} = \frac{I_L}{\sqrt{2}}\]For example:
- The U.S. uses AC 120V 60Hz, providing the same power as a DC 120V source.
- China uses AC 220V 50Hz, providing the same power as a DC 220V source.
If a load R is connected to various current phases \(I_n\), then:
\[I_{RMS} = \sqrt{\sum I^2_n}\]Average Power
Resistors:
\[P_{Ravg} = \frac{1}{2} V_R I_R \cos \theta\] \[P_{Ravg} = V_{rms} I_{rms} \cos \theta\]Where \(V_R, I_R\) is the amplitude of the AC voltage/current.
Capacitors & Inductances: Average power \(P_{avg} = 0\)
Apparent Power: \(P_{app} = V_{rms} I_{rms}\)
Maximum Power Transfer
Assume a Thévenin Circuit with AC volt source \(V_{TH}\) in series with an impedance \(\Z_{TH}\) and a load \(\Z_{L}\).
If \(\Z_L = \Z^*_{TH},\ \Z_L\) receives maximum power.
This means the resistances are the same, and the reactances have opposite sign:
\[R_L = R_{TH}\] \[X_L = -X_{TH}\]Complex Power
Average Power \(P = V_{rms} I_{rms} \cos(\theta-\phi)\)
Reactive Power \(Q = V_{rms} I_{rms} \sin(\theta-\phi)\)
\[S = P + jQ = V_{rms} I^*_{rms} = V_{rms} I_{rms} e^{j(\theta - \phi)}\]Power Table
Power | Equation | Description |
---|---|---|
Average \(P\) | \(V_{rms} I_{rms} \cos(\theta)\) | Real (Watts) |
Reactive \(Q\) | \(V_{rms} I_{rms} \sin(\theta)\) | Exchange with C, L |
Complex \(S\) | \(P + jQ = V_{rms} I_{rms}^*\) | Real + Reactive |
Apparent \(S\) | \(V_{rms} I_{rms}\) | Total magnitude |
Phasor Example
Complex power for:
- \(R1: 26.6\) VA
- \(C1: -j1331\) VA
- \(R2 + L1: 532 + j1065\) VA
- \(V1: -559 + j266\) VA
pg 453
S-domain
Laplace transform table
f(t) | F(s) = L(f(t)) |
---|---|
Unit step function, \(u(t)\) | \(\frac{1}{s}\) |
Dirac delta function, \(\delta(t)\) | \(1\) |
Ramp function, \(t\ u(t)\) | \(\frac{1}{s^2}\) |
\(e^{-at}\ u(t)\) | \(\frac{1}{s + a}\) |
\(t\ e^{-at}\ u(t)\) | \(\frac{1}{(s + a)^2}\) |
\(t^n\ u(t)\) (n = integer) | \(\frac{n!}{s^{n+1}}\) |
\(\sin(\omega t)\ u(t)\) | \(\frac{\omega}{s^2 + \omega^2}\) |
\(\cos(\omega t)\ u(t)\) | \(\frac{s}{s^2 + \omega^2}\) |
\(e^{-at} \sin(\omega t)\ u(t)\) | \(\frac{\omega}{(s + a)^2 + \omega^2}\) |
\(e^{-at} \cos(\omega t)\ u(t)\) | \(\frac{s + a}{(s + a)^2 + \omega^2}\) |
\(t\ \sin(\omega t)\ u(t)\) | \(\frac{2\omega s}{(s^2 + \omega^2)^2}\) |
\(t\ \cos(\omega t)\ u(t)\) | \(\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}\) |
\(\frac{1}{\omega^2}(1 - \cos(\omega t))\ u(t)\) | \(\frac{1}{s(s^2 + \omega^2)}\) |
Laplace Transform Properties
Property | Operation | Laplace Transform |
---|---|---|
Linearity | \(a f(t) + b g(t)\) | \(a F(s) + b G(s)\) |
Time Shifting | \(f(t - k)u(t - k)\) | \(e^{-ks}F(s)\) |
Frequency Shifting | \(e^{at}f(t)\) | \(F(s - a)\) |
Time Derivative | \(f'(t)\) | \(sF(s) - f(0^-)\) |
Second Derivative | \(f''(t)\) | \(s^2F(s) - sf(0^-) - f'(0^-)\) |
Integral | \(\int_0^t f(\tau) d\tau\) | \(\frac{1}{s}F(s)\) |
Convolution | \(f(t) * g(t)\) | \(F(s) \cdot G(s)\) |
Final Value Theorem | \(\lim_{t \to \infty} f(t)\) | \(\lim_{s \to 0} sF(s)\) (if poles in left half-plane) |
Initial Value Theorem | \(\lim_{t \to 0^+} f(t)\) | \(\lim_{s \to \infty} sF(s)\) |
For time shifting, \(k > 0\) or else \(f(t)\) diverges (no Laplace transform).
Common Laplace Transforms
Time Domain: \(f(t)\) | Frequency Domain: \(F(s)\) |
---|---|
\(u(t)\) | \(\frac{1}{s}\) |
\(u(t - k)\) | \(\frac{e^{-ks}}{s}\) |
\(\delta(t)\) | \(1\) |
\(\delta(t - k)\) | \(e^{-ks}\) |
\(t^n u(t)\) (\(n \geq 0\)) | \(\frac{n!}{s^{n+1}}\) |
\(e^{-at}u(t)\) | \(\frac{1}{s + a}\) |
\(t^n e^{-at}u(t)\) | \(\frac{n!}{(s + a)^{n+1}}\) |
\(\sin(\omega t)u(t)\) | \(\frac{\omega}{s^2 + \omega^2}\) |
\(\cos(\omega t)u(t)\) | \(\frac{s}{s^2 + \omega^2}\) |
\(e^{-at}\sin(\omega t)u(t)\) | \(\frac{\omega}{(s + a)^2 + \omega^2}\) |
\(e^{-at}\cos(\omega t)u(t)\) | \(\frac{s + a}{(s + a)^2 + \omega^2}\) |
\(\sinh(\alpha t)u(t)\) | \(\frac{\alpha}{s^2 - \alpha^2}\) |
\(\cosh(\alpha t)u(t)\) | \(\frac{s}{s^2 - \alpha^2}\) |
Reactive Element Transforms
In S-domain, we talk about impedances \(Z\) just like in phasors.
Inductor
Inductor | Time Domain | s-Domain |
---|---|---|
Voltage | \(v_L(t) = L \frac{di_L(t)}{dt}\) | \(V_L(s) = L[sI_L(s) - i_L(0^-)]\) |
Current | \(i_L(t) = \frac{1}{L} \int_0^t v_L(\tau)d\tau + i_L(0^-)\) | \(I_L(s) = \frac{V_L(s)}{sL} + \frac{i_L(0^-)}{s}\) |
Impedance | \(Z_L(s)\) | \(sL\) |
Capacitor
Capacitor | Time Domain | s-Domain |
---|---|---|
Voltage | \(v_C(t) = \frac{1}{C} \int_0^t i_C(\tau)d\tau + v_C(0^-)\) | \(V_C(s) = \frac{I_C(s)}{sC} + \frac{v_C(0^-)}{s}\) |
Current | \(i_C(t) = C \frac{dv_C(t)}{dt}\) | \(I_C(s) = C[sV_C(s) - v_C(0^-)]\) |
Impedance | \(Z_C(s)\) | \(\frac{1}{sC}\) |
Example
Pending:
- 3-Phase [c12]
- Mutual Inductance (transformers) [c13]
- Transfer functions
- Op amps
- Two-port networks