Equations in flametemp()
date: 2025-02-24
flametemp
Equations
1
terms = comp(:, 1) + comp(:, 2)/4 - comp(:, 3)/2;
2
Pv = psat*phi;
nH2Or = (Pv/Pt) * n_air/(1-(Pv/Pt));
cengel pg 727-728, eq 14-9, 14-10
3
nO2r = n_air;
nN2r = 3.76 * n_air;
4
% nCO2 nCO nH2O nH2 nO2
A = [1, 1, 0, 0, 0; % C
0, 0, 2, 2, 0; % H
2, 1, 1, 0, 2; % O
1-xCO2,-xCO2, 0, 0, 0; % CO2 conversion
0, 0, 1-xH2O, -xH2O, 0]; % H2O conversion
B = [nC; nH; nO; 0; 0];
5
h_total_air = hf_air + h_air - hamb_air;
6
h_N2ideal = (n_r.*h_r - n_p.*h_pBase)./n_p;
7
t_flame = LagrangeIntp(h_tofind, T_tofind, h_flame);
let xCO2 = nCO2/(nCO2 + nCO) xH2O = nH2O/(nH2O + nH2) the values are given: xCO2 = 0.85; xH2O = 0.93; with the above, balance this equation: 1 CH3OH(l) + 4.5 (O2 + 3.76N2) + 0.086081 H2O => CO2 + CO + H2O + H2 + O2 + N2
HUMID AIR nH2Or = molesH2OinAir(n_air, phi, T, Pt) How many moles of H2O (n_H2O) are in the air under the following conditions? : n_air = 4.5 % Dry air phi = 0.6; % Relative humidity air_temp = 25; % °C pressure = 101.325; % kPa
Pv = psat*phi; nH2Or = (Pv/Pt) * n_air/(1-(Pv/Pt));