Vector Calculus operators
Given a function \(f(x_1, x_2, ..., x_n)\):
Eq Table
| Operation | Equation | Type |
|---|---|---|
| gradient \(\nabla f\) | \(\left( \frac{\partial f}{\partial x_1} \vec{v_1} + \frac{\partial f}{\partial x_2} \vec{v_2} + ... + \frac{\partial f}{\partial x_n} \vec{v_n} \right)\) | Vector |
| curl \(\nabla \times f\) | \(\left( \frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z} \right) \hat{i} - \left( \frac{\partial f_z}{\partial x}- \frac{\partial f_x}{\partial z}\right) \hat{j}+ \left( \frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y}\right) \hat{k}\) | Vector |
| div \(\nabla \cdot f\) | \(\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z}\) | Scalar |
| laplacian \(\nabla^2 f\) | \(\sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2}\) | Same as input |
Gradient
\[\nabla f = \left( \frac{\partial f}{\partial x_1} \vec{v_1} + \frac{\partial f}{\partial x_2} \vec{v_2} + ... + \frac{\partial f}{\partial x_n} \vec{v_n} \right)\] \[\nabla f = (F_{x_1}, F_{x_2}, ... , F_{x_n})\]
Curl
\[\text{curl}\ F = \left( \frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z} \right) \hat{i} - \left( \frac{\partial f_z}{\partial x} - \frac{\partial f_x}{\partial z} \right) \hat{j} + \left( \frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \right) \hat{k}\] \[\text{curl}\ F = \text{det} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}\]
Notations:
\[\text{curl}\ F = \nabla \times F = \text{rot}\ F\]Div
Given a function \(\vec{f}(x, y, z) = f_x \vec{i} + f_y \vec{j} + f_z \vec{k}\):
\[\text{div}\ F = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z}\] \[\text{div}\ F = \nabla \cdot F\]
Note: The output is a scalar!
Laplacian
\[\nabla^2 = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}\]
Where \(\nabla^2\) is laplacian operator (not to be confused with gradient squared).
\(\nabla^2\) is unique as it returns the same type of the output (scalar, vector in and out).
Say we have a function \(f(x, y, z) = u \vec{i} + v \vec{j} + w \vec{k}\). Then:
\[\nabla^2 f = (\nabla^2 u,\ \nabla^2 v,\ \nabla^2 w)\] \[\nabla^2 f = \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \hat{i} + \left( \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) \hat{j} + \left( \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) \hat{k}\]Implicit Derivative
Given \(F(x,y) = 0\). Then:
\[y' = \frac{dy}{dx} = -\frac{F_x}{F_y}\] \[x' = \frac{dx}{dy} = -\frac{F_y}{F_x}\]
This can be expanded to functions with more variables:
Given \(F(x, y, z, t)\):
\[Y_x = -\frac{F_x}{F_y}\] \[Z_t = -\frac{F_t}{F_z}\]
And so on…
For this to work, move the entire function to one side so that the other side is equal to 0.
Directional Derivative
Given a function \(f(x_1, x_2, ..., x_n)\) and a unit vector \(\vec{u} = (v_1, v_2, ..., v_n)\), the directional derivative:
\[D_{\vec{u}} f(x_1, x_2, .., x_n) = v_1 F_{x_1} + v_2 F_{x_2} + ... + v_n F_{x_n}\] \[D_{\vec{u}} f(x_1, x_2, .., x_n) = \vec{u} \cdot \nabla f\]
Note: The output is a scalar!
The maximum value of \(D_{\vec{u}} f\) is when \(\vec{u}\) has the same direction as \(\nabla f\).
Lagrange Multipliers
Given two functions f, g of same dimensions:
\[\nabla f(x_1, x_2, ..., x_n) = \lambda \nabla g(x_1, x_2, ..., x_n)\]Where \(\lambda\) is an arbitrary constant.
Green
Let C be a simple closed curve with positive, counterclockwise orientation. Let D be the region enclosed by C.
\[\oint_C (P dx + Q dy) = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA\]Where \(dA = dy\ dx = dx \ dy\), depending on the integration order.
Stokes
\[\oint_C \vec{F} \cdot d\vec{\Gamma} = \iint_s (\text{curl}\ \vec{F}) \cdot \hat{n}\ dS\]Where
- \(\vec{F}\) is force field
- \(d\vec{\Gamma}\) is path differential
- \(C\) is a closed curve
- \(\oint_C \vec{F} \cdot d\vec{\Gamma}\) is the work done by a vector field on a closed curve
- \(S\) is any surface bounded by \(C\)
Full story here
Notation
- Partial derivatives: \(F_x = \frac{\partial F}{\partial x}\)