Elastic Parameters

Mechanics

Eq Table

Name Eq
Axial stress \(\sigma = \frac{F_v}{A}\)
Axial strain \(\varepsilon = \frac{\Delta l}{l_o}\)
Young’s Modulus \(E = \frac{\sigma}{\varepsilon}\)
Shear Stress \(\tau = \frac{F_s}{A}\)
Shear Strain \(\gamma = \frac{d}{l_o}\)
Shear Modulus \(G = \frac{\tau}{\gamma}\)
Poisson’s Ratio \(v_{xy} = -\frac{\varepsilon_y}{\varepsilon_x}\)
Bulk Modulus \(K = \frac{P}{\Delta V/V}\)

Axial stress

\[\sigma = \frac{F_v}{A}\]

Where

  • \(\sigma\) is axial stress
  • \(F_v\) is axial force
  • \(A\) is area

Units: [Pa]

Axial strain

\[\varepsilon = \frac{\Delta l}{l_o}\]

Where

  • \(\varepsilon\) is axial strain
  • \(\Delta l\) is change in length
  • \(l_o\) is original length

Units: Dimensionless

Young’s Modulus

\[E = \frac{\sigma}{\varepsilon}\]

Where

  • \(E\) is Young’s Modulus
  • \(\sigma\) is stress
  • \(\varepsilon\) is strain

Units: [Pa]

Shear Stress

\[\tau = \frac{F_s}{A}\]

Where

  • \(\tau\) is shear strain
  • \(F_s\) is shear force
  • \(A\) is area

Units: [Pa]

Shear Strain

\[\gamma = \frac{d}{l_o}\]

Where

  • \(\gamma\) is shear strain
  • \(d\) is deformation
  • \(l_o\) is original length

Units: Dimensionless

Shear Modulus

\[G = \frac{\tau}{\gamma}\]

Where

  • \(G\) is shear modulus
  • \(\tau\) is shear stress
  • \(\gamma\) is shear strain

Units: [Pa]

Poisson’s Ratio

\[v_{xy} = -\frac{\varepsilon_y}{\varepsilon_x}\]

Where

  • \(v_{xy}\) is Poisson’s Ratio
  • \(\varepsilon_y\) is lateral strain
  • \(\varepsilon_x\) is applied strain

Bulk Modulus

\[K = \frac{P}{\Delta V/V}\]

Where

  • \(K\) is bulk modulus
  • \(P\) is pressure
  • \(\Delta V/V\) is volumetric strain

Relationships

Shear Modulus G Young’s Modulus E Poisson’s Ratio v Bulk Modulus K
\(\frac{E}{2(1 + v)}\) \(2G(1 + v)\) \(\frac{E - 2G}{2G}\) \(\frac{GE}{2(3G - E)}\)
\(\frac{3EK}{9K - E}\) \(\frac{3KG}{3K + G}\) \(\frac{3K - 2G}{2(3K + G)}\) \(\frac{2G(1 + v)}{3(1 - 2v)}\)
\(\frac{3K(1 - 2v)}{2(1 + v)}\) \(3K(1 - 2v)\) \(\frac{3K - E}{6K}\) \(\frac{E}{3(1 - 2v)}\)