test
Problem Type 5
A simply supported beam with a uniform shape (rectangular, circular) holds a weight (uniformly distributed or concentrated). A point X in the beam is of interest.
Given:
- Load: q (distributed, N/m) or P (concentrated, N)
- Point X coordinates (x, y)
- Beam dimensions (width, height, diameter…)
- No axial (horizontal) load
Find:
- Stresses at point X
Solution
1. Find internal force and moment in point X
Let internal force be \(V_x\), moment \(M_x\).
For concentrated load \(P\) at distance \(m\) from origin:
\[V_x = \frac{P(L - m)}{L}, \quad M_x = \frac{Px(L - m)}{L}, \quad 0 < x < m\] \[V_x = -\frac{Pm}{L}, \quad M_x = \frac{Pm}{L}(L - x), \quad m < x < L\]
For uniformly distributed load:
\[V_x = \frac{qL}{2} - qx, \quad M_x = \frac{qLx}{2} - \frac{qx^2}{2}\]
For cantilevers, concentrated load \(P\):
\[V_x = P,\quad M_x = P(L - x)\]For cantilevers, uniform load \(q\):
\[V_x = q(L - x),\quad M_x = \frac{q(L - x)^2}{2}\]
2. Find moment of inertia
For rectangular cross section, width \(b\), height \(h\):
\[I = \frac{bh^3}{12}\]
For circular cross section, diameter \(d\):
\[I = \frac{\pi d^4}{64}\]
3. Calculate stresses
\[\sigma_x = -\frac{M_x y}{I}\]
For rectangular beam:
\[\tau_x = \frac{V_x}{2I} \left( \frac{h^2}{4} - y^2 \right)\]
For \(\sigma_x < 0\), the stress is compressive.
Example
%% Inputs
y = 25e-3; % m (distance from point to neutral axis)
q = 28e+3; % N/m (distributed load)
L = 1; % m (length of beam)
x = L - 0.2; % m (x coord of point)
b = 25e-3; % m (beam width)
h = 100e-3; % m (beam height)
% Here the beam is rectangular.
%% Calculations
Vc = (q*L)/2 - q*x;
Mc = (1/2)*q*L*x - (1/2)*q*(x^2);
I = (b*(h^3))/12;
omega = -(Mc*y)/I;
Tc = (Vc/(2*I)) * ((h^2)/4 - y^2);
%% Print
disp("Mc = " + Mc + " N*m")
disp("I = " + I + " m^4")
disp("omega_c = " + omega + " N/m^2")
disp("tau_c = " + Tc + " N/m^2")
Problem Type 10
An element is under plane stress. Given:
- Stress profile \(\sigma_x,\ \sigma_y,\ \tau_{xy}\)
Find:
- Principal stresses \(\sigma_1,\ \sigma_2\)
- Maximum shear stress \(\tau_{\text{max}}\)
- Draw the principal stresses on a properly oriented plane
- Draw the max shear stress on a properly oriented plane
Solution
1. Find \(\sigma_{\text{avg}},\ \sigma_{\text{diff}}\):
\[\sigma_{\text{avg}} = \frac{\sigma_x + \sigma_y}{2}\] \[\sigma_{\text{diff}} = \sigma_x - \sigma_y\]
2. Find \(\tau_{\text{max}}\):
\[\tau_{\text{max}} = \sqrt{\frac{\sigma_{\text{diff}}^2}{4} + \tau_{xy}^2}\]
3. Find the principal stresses \(\sigma_1,\ \sigma_2\)
\[\sigma_1 = \sigma_{\text{avg}} + \tau_{\text{max}}\] \[\sigma_2 = \sigma_{\text{avg}} - \tau_{\text{max}}\]
Note: \(\tau_{\text{max}} = \frac{\sigma_1 - \sigma_2}{2}\). AND \(\sigma_x + \sigma_y = \sigma_1 + \sigma_2\). Use these to verify your values.
4. Find the angles for the drawing \(\theta_p,\ \theta_s\)
\[\theta_p = \frac{1}{2} \arctan \frac{2\tau_{\text{xy}}}{\sigma_{\text{diff}}}\] \[\theta_s = \frac{1}{2} \arctan \frac{\sigma_{\text{diff}}}{2\tau_{\text{xy}}}\]
5. Assign principal angles
To verify which angle is for \(\sigma_1\) and \(\sigma_2\), the safe way is to replace in the typical transformation equation. For example:
\[\sigma_{x1} =\sigma_{\text{avg}} + \frac{\sigma_{\text{diff}}}{2} \cos{2\theta_p} + \tau_{\text{xy}} \sin{2\theta}\]If \(\sigma_{x1} = \sigma_{1}\), then \(\theta_{p1} = \theta_p\) and \(\theta_{p2} = \theta_p + 90°\).
Otherwise, \(\theta_{p2} = \theta_p\) and \(\theta_{p1} = \theta_p + 90°\).
Verify that \(\theta_s = \theta_{p1} \pm 45°\).
Example
%% Inputs
sigma_x = 86; % MPa
sigma_y = -28; % MPa
tau_xy = -32; % MPa
% Positive => tensile
% negative => compressive
% For shear stress
% Positive => points to (+)(+) and (-)(-) quadrants
% negative => points to (-)(+) and (+)(-) quadrants
%% Calculations
sigma_diff = sigma_x - sigma_y;
sigma_avg = (sigma_x + sigma_y)/2;
tau_max = sqrt((sigma_diff^2)/4 + tau_xy^2);
sigma_1 = sigma_avg + tau_max;
sigma_2 = sigma_avg - tau_max;
theta_p = 0.5*atand(2*tau_xy/sigma_diff);
theta_s = 0.5*atand(-sigma_diff/(2*tau_xy));
% Assign principal angles
theta_1 = theta_p;
theta_2 = theta_p;
sigma_test = sigma_avg + (sigma_diff/2)*cosd(2*theta_p) + tau_xy*sind(2*theta_p);
if (abs(sigma_1 - sigma_test) < 1e-6)
theta_2 = theta_2 + 90;
else
theta_1 = theta_1 + 90;
end
%% Print
disp("\sigma_1 = " + sigma_1 + " MPa")
disp("\sigma_2 = " + sigma_2 + " MPa")
disp("\tau_{max} = " + tau_max + " MPa")
disp("\theta_p = " + theta_p + " deg")
disp("\theta_s = " + theta_s + " deg")
disp("\theta_1 = " + theta_1 + " deg")
disp("\theta_2 = " + theta_2 + " deg")