Motors 101: Magnets
date: 2025-04-16
Maxwell’s Equations
Let \(\vec{E}\) be an electric field, \(\vec{B}\) a magnetic field.
Gauss for electricity
\[div\ \vec{E} = \oint \vec{E} \cdot d\vec{A} = \frac{\rho}{\varepsilon_o}\]Where \(\rho\) is electric charge density, \(\varepsilon_o\) vacuum permittivity.
Faraday
\[curl\ \vec{E} = \oint \vec{E} \cdot d\vec{s} = -\frac{\partial{\vec{B}}}{\partial t}\]Gauss for magnetism
\[div\ \vec{B} = \oint \vec{B} \cdot d\vec{A} = 0\]Ampère-Maxwell
\[curl\ \vec{B} = \oint \vec{B} \cdot d\vec{s} = \mu_o \vec{J} + \mu_o \varepsilon_o \frac{\partial{\vec{E}}}{\partial t}\]Where \(\mu_o\) is vacuum permeability, \(\vec{J}\) electric charge density
- \(\mu_o = 4\pi \times 10^{-7}\) H/m
- \(\varepsilon_o = 8.85 \times 10^{-12}\) F/m
- \(\vec{J}\) ?
Equations
Lenz Law - Eddy Currents
Assume there is a conducting material in shape of a closed circuit.