Motors 101: Magnets

Motors

date: 2025-04-16


Maxwell’s Equations

Adapted from 1,2

Let \(\vec{E}\) be an electric field, \(\vec{B}\) a magnetic field.

Gauss for electricity

\[div\ \vec{E} = \oint \vec{E} \cdot d\vec{A} = \frac{\rho}{\varepsilon_o}\]

Where \(\rho\) is electric charge density, \(\varepsilon_o\) vacuum permittivity.


Faraday

\[curl\ \vec{E} = \oint \vec{E} \cdot d\vec{s} = -\frac{\partial{\vec{B}}}{\partial t}\]

Gauss for magnetism

\[div\ \vec{B} = \oint \vec{B} \cdot d\vec{A} = 0\]

Ampère-Maxwell

\[curl\ \vec{B} = \oint \vec{B} \cdot d\vec{s} = \mu_o \vec{J} + \mu_o \varepsilon_o \frac{\partial{\vec{E}}}{\partial t}\]

Where \(\mu_o\) is vacuum permeability, \(\vec{J}\) electric charge density

  • \(\mu_o = 4\pi \times 10^{-7}\) H/m
  • \(\varepsilon_o = 8.85 \times 10^{-12}\) F/m
  • \(\vec{J}\) ?

Equations

Adapted from 3,4

Lenz Law - Eddy Currents

Assume there is a conducting material in shape of a closed circuit.

Credits

  1. Umans, S. (2014). Electric Machinery. McGraw Hill: 7th Ed. 

  2. Walker, J. et. al, (2014). Fundamentals of Physics. Wiley: 10th Ed. 

  3. Chapman, S. (2012). Electric Machinery Fundamentals. McGraw Hill: 5th Ed. 

  4. Bu, Q. (2025). Introduction to Mechatronics (Lecture Notes).