Fourier Transform
Definition
Linear Frequency \(f\)
Fourier Transform:
\[X(f) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t) e^{-j2\pi tf} dt\]Inverse Fourier Transform:
\[x(t) = \mathcal{F}^{-1}\{X(f)\} = \int_{-\infty}^{\infty} X(f) e^{j2\pi tf} dt\]
Where
- \(f = \frac{1}{T}\) is frequency
The physical unit is [Hz] \(= \frac{1}{s}\)
Angular frequency \(\omega = 2\pi f\)
Fourier Transform:
\[X(\omega) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt\]Inverse Fourier Transform:
\[x(t) = \mathcal{F}^{-1}\{X(\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} dt\]
Where
- \(\omega = 2\pi f\) is angular frequency
The physical unit is [rad/s]
If the integral goes to infinity, then the function \(x(t)\) does not have a fourier transform.
Basic Pairs
| \(x(t)\) | \(X(\omega)\) |
|---|---|
| \(\delta(t-t_0)\) | \(e^{-j\omega t_0}\) |
| \(1\) | \(2\pi \delta(\omega)\) |
| \(u(t)\) | \(\frac{1}{j\omega} + \pi \delta(\omega)\) |
| \(e^{j\omega_0 t}\) | \(2\pi \delta(\omega - \omega_0)\) |
| \(\sin{\omega_0 t}\) | \(\frac{\pi}{j} (\delta(\omega - \omega_0) - \delta(\omega + \omega_0))\) |
| \(\cos{\omega_0 t}\) | \(\frac{\pi}{j} (\delta(\omega - \omega_0) + \delta(\omega + \omega_0))\) |
| \(1,\ \mid \omega \mid \ < T_1\) | \(\frac{2\sin{\omega T_1}}{\omega}\) |
| \(\frac{\sin{Wt}}{\pi t}\) | \(1,\ \mid \omega \mid \ < W\) |
Properties
Linearity
\[\mathcal{F}\{ax_1 (t) + bx_2 (t)\} = aX_1 (\omega) + bX_2 (\omega)\]Time shifting
\[\mathcal{F}\{x(t - t_0)\} = X(\omega) e^{-j\omega t_0}\]Scaling
\[\mathcal{F}\{x(at)\} = \frac{1}{\mid a \mid} X \left( \frac{\omega}{a} \right)\]Frequency shifting
\[\mathcal{F}\{x(t)\ e^{j\omega_0 t} \} = X(\omega - \omega_0)\]Differentiation
\[\mathcal{F}\left \{ \frac{d^n}{dt^n} x(t) \right \} = (j\omega)^n X(\omega)\]Integration
\[\mathcal{F}\left \{ \int_{-\infty}^{t} x(\tau) d\tau \right \} = \frac{1}{j\omega} X(\omega) + \pi X(0) \delta(\omega)\]Convolution
\[\mathcal{F}\{x_1(t) * x_2(t) \} = X_1(\omega)\ X_2(\omega)\]Multiplication
\[\mathcal{F}\{x_1(t)\ x_2(t) \} = \frac{1}{2\pi} X_1(\omega) * X_2(\omega)\]